

Vidyasagar University

Curriculum for B.Sc. (Honours) in Zoology [Choice Based Credit System]

Semester-V

Course	Course Code	Name of the Subjects	Course Type/ Nature	Teaching Scheme in hour per week			Credit	Marks
				L	T	P		
CC- 11		C11T: Molecular Biology	Core Course-11	4	0	0	6	75
		- Lab		0	0	4		
CC- 12		C12T: Genetics	Core Course-12	4	0	0	6	75
		- Lab		0	0	4		
DSE-1		TBD	Discipline Specific Elective - 1	4	0	0	6	75
				0	0	4		
DSE-2		TBD	Discipline Specific Elective -2	4	0	0	6	75
				0	0	4		
Semester Total							24	300

L= Lecture, **T**= Tutorial, **P** = Practical, **CC** - Core Course, **TBD** - To be decided, **DSE**: Discipline Specific Elective.

Semester-V

List of Core Course (CC)

CC-11: Molecular Biology

CC-12: Genetics

Discipline Specific Electives (DSE)

DSE-1: Animal Behaviour and Chronobiology

Or

DSE-1: Fish and Fisheries

Or

DSE-1: Reproductive Biology

DSE-2: Animal Biotechnology

Or

DSE-2: Microbiology

Semester-V

Core Courses (CC)

CC-11: Molecular Biology **Credits 06**

C11T: Molecular Biology **Credits 04**

Course Contents:

Unit 1: Nucleic Acids

Salient features of DNA and RNA. Watson and Crick Model of DNA

Unit 2: DNA Replication

Mechanism of DNA Replication in Prokaryotes, Semi-conservative, bidirectional and discontinuous Replication, RNA priming, Replication of telomeres

Unit 3: Transcription

Mechanism of Transcription in prokaryotes and eukaryotes, Transcription factors, Difference between prokaryotic and eukaryotic transcription.

Unit 4: Translation

Mechanism of protein synthesis in prokaryotes, Ribosome structure and assembly in prokaryotes, fidelity of protein synthesis, aminoacyl tRNA synthetases and charging of tRNA; Proteins involved in initiation, elongation and termination of polypeptide chain; Genetic code, Degeneracy of the genetic code and Wobble Hypothesis; Inhibitors of protein synthesis; Difference between prokaryotic and eukaryotic translation

Unit 5: Post Transcriptional Modifications and Processing of Eukaryotic RNA

Capping and Poly A tail formation in mRNA; Split genes: concept of introns and exons, splicing mechanism, alternative splicing, exon shuffling, and RNA editing, Processing of tRNA

Unit 6: Gene Regulation

Regulation of Transcription in prokaryotes: *lac* operon and *trp* operon; Regulation of Transcription in eukaryotes: Activators, enhancers, silencer, repressors, miRNA mediated gene silencing, Genetic imprinting

Unit 7: DNA Repair Mechanisms

Types of DNA repair mechanisms, RecBCD model in prokaryotes, nucleotide and base excision repair, SOS repair

Unit 8: Molecular Techniques

PCR, Western and Southern blot, Northern Blot, Sanger DNA sequencing

Suggested Readings:

1. Molecular Cell Biology by Harvey Lodish. 7th Edition. W.H. Freeman.
2. Molecular Biology of the Gene by Watson. 7th Edition. Pearson.

3. iGenetics: A Molecular Approach by Peter. J. Russell. 3rd edition. Pearson Benjamin Cummings.

C11P: Molecular Biology (Lab)

Credits 02

List of Practical

1. Demonstration of polytene and lampbrush chromosome from photograph
2. Isolation and quantification of genomic DNA using spectrophotometer (A260 measurement)
3. Agarose gel electrophoresis for DNA

CC-12: Genetics

Credits 06

C12T: Genetics

Credits 04

Course Contents:

Unit 1: Mendelian Genetics and its Extension

Principles of inheritance, Incomplete dominance and co-dominance, Epistasis Multiple alleles, Lethal alleles, Pleiotropy, Sex-linked, sex- influenced and sex-limited inheritance, Polygenic Inheritance.

Unit 2: Linkage, Crossing Over and Chromosomal Mapping

Linkage and Crossing Over, molecular basis of crossing over, Measuring Recombination frequency and linkage intensity using three factor crosses, Interference and coincidence

Unit 3: Mutations

Types of gene mutations (Classification), Types of chromosomal aberrations (Classification with one suitable example of each), Non-disjunction and variation in chromosome number; Molecular basis of mutations in relation to UV light and chemical mutagens

Unit 4: Sex Determination

Mechanisms of sex determination in *Drosophila*

Sex determination in mammals

Dosage compensation in *Drosophila* & Human

Unit 5: Extra-chromosomal Inheritance

Criteria for extra chromosomal inheritance, Antibiotic resistance in *Chlamydomonas*, Kappa particle in *Paramecium* Shell spiralling in snail

Unit 6: Recombination in Bacteria and Viruses

Conjugation, Transformation, Transduction, Complementation test in Bacteriophage

Unit 7: Transposable Genetic Elements

Transposons in bacteria, Ac-Ds elements in maize and P elements in *Drosophila*, LINE, SINE, Alu elements in humans

Suggested Readings:

1. Developmental biology by Scott. F. Gilbert, 9th edition.
2. Snustad, D.P., Simmons, M.J. (2009). Principles of Genetics. V Edition. John Wiley and Sons Inc

3. Klug, W.S., Cummings, M.R., Spencer, C.A. (2012). Concepts of Genetics. X Edition. Benjamin Cummings
4. Russell, P. J. (2009). Genetics- A Molecular Approach. III Edition. Benjamin Cummings

Griffiths, A.J.F., Wessler, S.R., Lewontin, R.C. and Carroll, S.B.

C12P: Genetics (Lab)

Credits 02

List of Practical

1. Chi-square analyses
2. Linkage maps based on conjugation
3. Identification of chromosomal aberration in Drosophila and man from photograph
4. Pedigree analysis of some human inherited traits

Discipline Specific Electives (DSE)

DSE-1 : Animal Behaviour and Chronobiology

Credits 06

DSE1T : Animal Behaviour and Chronobiology

Credits 04

Course Contents:

Unit 1: Introduction to Animal Behaviour

Origin and history of Ethology, Brief profiles of Karl Von Frish, Ivan Pavlov, Konrad Lorenz, Niko Tinbergen Proximate and ultimate causes of behaviour, Methods and recording of a behaviour

Unit 2: Patterns of Behaviour

Stereotyped Behaviours (Orientation, Reflexes); Individual Behavioural patterns; Instinct vs. Learnt Behaviour; Associative learning, classical and operant conditioning, Habituation, Imprinting.

Unit 3: Social and Sexual Behaviour

Social Behaviour: Concept of Society; Communication and the senses
Altruism; Insects' society with Honey bee as example; Foraging in honey bee and advantages of the waggle dance.

Sexual Behaviour: Asymmetry of sex, Sexual dimorphism, Mate choice, Intra-sexual selection (male rivalry), Inter-sexual selection (female choice), Sexual conflict in parental care.

Unit 4: Introduction to Chronobiology

Historical developments in chronobiology; Biological oscillation: the concept of Average, amplitude, phase and period.

Adaptive significance of biological clocks

Unit 5: Biological Rhythm

Types and characteristics of biological rhythms: Short- and Long- term rhythms; Circadian rhythms; Tidal rhythms and Lunar rhythms; Concept of synchronization and masking; Photic and non-photic zeitgebers; Circannual rhythms; Photoperiod and regulation of seasonal reproduction of vertebrates; Role of melatonin.

Suggested Readings:

1. Animal Behaviour by Drickamar.
2. John Alcock, Animal Behaviour, Sinauer Associate Inc., USA.
3. Paul W. Sherman and John Alcock, Exploring Animal Behaviour, Sinauer Associate Inc., Massachusetts, USA.
4. Chronobiology Biological Timekeeping: Jay. C. Dunlap, Jennifer. J. Loros Patricia J. De Coursey (ed). 2004, Sinauer Associates, Inc. Publishers, Sunderland, MA, USA
5. Insect Clocks D.S. Saunders, C.G.H. Steel, X., Afopoulou (ed.) R.D. Lewis. (3rdEd) 2002 Barenz and Noble Inc. New York, USA
6. Biological Rhythms: Vinod Kumar (2002) Narosa Publishing House, Delhi/ Springer-Verlag, Germany.

DSE1P: Animal Behaviour and Chronobiology (Lab)

Credits 02

List of Practical

1. To study nests and nesting habits of the birds and social insects.
2. To study the behavioural responses of wood lice to dry and humid conditions.
3. To study geotaxis behaviour in earthworm.
4. To study the phototaxis behaviour in insect larvae.
5. Visit to Forest/ Wild life Sanctuary/Biodiversity Park/Zoological Park to study behavioural activities of animals and prepare a short report.
6. Study and actogram construction of locomotor activity of suitable animal models.
7. Study of circadian functions in humans (daily eating, sleep and temperature patterns).

Or

DSE-1: Fish and Fisheries

Credits 06

DSE1T: Fish and Fisheries

Credits 04

Course Contents:

Unit 1: Introduction and Classification

General description of fish

Feeding habit, habitat and manner of reproduction

Classification of fish (up to Subclasses)

Unit 2: Morphology and Physiology

Types of fins and their modifications; Locomotion in fish; Hydrodynamics; Types of Scales, Use of scales in Classification and determination of age of fish; Gills and gas exchange; Swim Bladder: Types and role in Respiration, buoyancy; Osmoregulation in Elasmobranchs; Reproductive strategies (special reference to Indian fish); Electric organ, Bioluminescence

Unit 3: Fisheries

Inland Fisheries; Marine Fisheries; Environmental factors influencing the seasonal variations in fish catches in the Arabian Sea and the Bay of Bengal; Fishing crafts and Gears; Depletion of fisheries resources; Application of remote sensing and GIS in fisheries; Fisheries law and regulations

Unit 4: Aquaculture

Sustainable Aquaculture; Extensive, semi-intensive and intensive culture of fish; Pen and cage culture; Polyculture; Composite fish culture; Brood stock management; Induced breeding of fish; Management of finfish hatcheries; Preparation and maintenance of fish aquarium; Preparation of compound diets for fish; Role of water quality in aquaculture; Fish diseases: Bacterial, viral and parasitic; Preservation and processing of harvested fish, Fishery by-products

Unit 5: Fish in research

Transgenic fish

Zebrafish as a model organism in research

Suggested Readings:

1. Q Bone and R Moore, Biology of Fishes, Talyor and Francis Group, CRC Press, U.K.
2. D. H. Evans and J. D. Claiborne, The Physiology of Fishes, Taylor and Francis Group, CRC Press, UK von der Emde, R.J. Mogdans and B.G. Kapoor. The Senses of Fish: Adaptations for the Reception of Natural Stimuli Springer, Netherlands
3. C.B.L. Srivastava, Fish Biology, Narendra Publishing House J.R. Norman, A history of Fishes, Hill and Wang Publishers
4. Khanna and H.R. Singh, A text book of Fish Biology and Fisheries, Narendra Publishing House.

Note: Classification to be followed from: Romar A. S. (1959)

DSE1P: Fish and Fisheries (Lab)

Credits 02

List of Practical

1. Morphometric and meristic characters of fishes
2. Study of *Petromyzon*, *Myxine*, *Pristis*, *Chimaera*, *Exocoetus*, *Hippocampus*, *Gambusia*, *Labeo*, *Heteropneustes*, *Anabas*
3. Study of different types of scales (through permanent slides/ photographs).
4. Study of crafts and gears used in Fisheries
5. Water quality criteria for Aquaculture: Assessment of pH, conductivity, Total solids, Total dissolved solids
6. Study of air breathing organs in *Channa*, *Heteropneustes*, *Anabas* and *Clarias*
7. Project Report on a visit to any fish farm/ pisciculture unit/Zebrafish rearing Lab.

Or

DSE-1: Reproductive Biology

Credits 06

DSE1T: Reproductive Biology

Credits 04

Course Contents:

Unit 1: Reproductive Endocrinology

Mechanism of action of steroids and glycoprotein hormones. hypothalamo – hypophyseal – gonadal axis, regulation of gonadotrophin secretion in human (male and female) Reproductive system:

Development and differentiation of gonads, genital ducts and external genitalia

Unit 2: Functional anatomy of male reproduction

Histoarchitechture of testis in human; Spermatogenesis; Kinetics and hormonal regulation; Androgen synthesis and metabolism; Accessory glands functions

Unit 3: Functional anatomy of female reproduction

Histoarchitechture of ovary in human; Oogenesis; Kinetics and hormonal regulation; Steroidogenesis and secretion of ovarian hormones; Reproductive cycles (human) and their regulation, fertilization; Hormonal control of implantation; Hormonal regulation of gestation, pregnancy diagnosis, foeto – maternal relationship; Mechanism of parturition and its hormonal regulation; Lactation and its Regulation

Unit 4: Reproductive Health

Infertility in male and female: causes, diagnosis and management Assisted Reproductive Technology: sex selection, sperm banks, frozen embryos, in vitro fertilization Modern contraceptive technologies

Suggested Readings:

1. Ross & Pawlina. Histology: A text and Atlas. 6th edition.
2. Guyton & Hall. Medical Physiology. 11th edition.
3. Knobil, E. et al. (eds). The Physiology of Reproduction. Raven Press Ltd.
4. Hatcher, R.A. et al. The Essentials of Contraceptive Technology. Population Information Programme.

DSE1P: Reproductive Biology (Lab)

Credits 02

List of Practicals:

1. Study of animal house: set up and maintenance of animal house, breeding techniques, care of normal and experimental animals.
2. Examination of vaginal smear rats from live animals.
3. Tissue fixation, embedding in paraffin, microtomy and slide preparation of any endocrine gland
4. Examination of histological sections from photomicrographs/ permanent slides of rat/human: testis, epididymis and accessory glands of male reproductive systems; Sections of ovary, fallopian tube, uterus (proliferative and secretory stages), cervix and vagina.
5. Sperm count and sperm motility in rat

DSE-2: Animal Biotechnology

Credits 06

DSE2T: Animal Biotechnology

Credits 04

Course Contents:

Unit 1: Introduction

Organization of prokaryotic and eukaryotic genome, Concept of genomics

Unit 2: Molecular Techniques in Gene manipulation

Cloning vectors: Plasmids, Cosmids, Phagemids, Lambda Bacteriophage, M13, BAC, YAC, MAC and Expression vectors (characteristics).Restriction enzymes: Nomenclature, detailed

study of Type II. Transformation techniques: Calcium chloride method and electroporation. Construction of genomic and cDNA libraries and screening by colony and plaque hybridization Southern, Northern and Western blotting
DNA sequencing: Sanger method
Polymerase Chain Reaction, DNA Finger Printing and DNA micro array

Unit 3: Genetically Modified Organisms

Production of cloned and transgenic animals: Nuclear Transplantation, Retroviral Method, DNA microinjection. Applications of transgenic animals: Production of pharmaceuticals, production of donor organs, knock out mice

Unit 4: Culture Techniques and Applications

Animal cell culture, expressing cloned genes in mammalian cells, Molecular diagnosis of genetic diseases (Cystic fibrosis, Sickle cell anemia)

Suggested Readings:

1. Brown, T.A. (1998). Molecular Biology Labfax II: Gene Cloning and DNA Analysis. II Edition, Academic Press, California, USA.
2. Glick, B.R. and Pasternak, J.J. (2009). Molecular Biotechnology - Principles and Applications of Recombinant DNA. IV Edition, ASM press, Washington, USA.
3. Weaver. Molecular Biology of Gene. 5th edition.
4. Primrose & Twyman. Principles of Gene Manipulation and Genomics. 7th edition.

DSE2P: Animal Biotechnology (Lab)

Credits 02

List of Practical

1. Genomic DNA isolation from E. coli
2. Plasmid DNA isolation (pUC 18/19) from E. coli
3. Restriction digestion of plasmid DNA.
4. Construction of circular and linear restriction map from the data provided.
5. Calculation of transformation efficiency from the data provided.
6. To study following techniques through photographs
 - a. Southern Blotting
 - b. Northern Blotting
 - c. Western Blotting
 - d. DNA Sequencing (Sanger's Method)
 - e. PCR
 - f. DNA fingerprinting
7. Project report on animal cell culture

Or

DSE-2: Microbiology

Credits 06

DSE2T: Microbiology

Credits 04

Course Contents:

Unit 1: Introduction to Microbiology

Historical perspective of Microbiology, Prokaryotic pathogens, Eukaryotic pathogens

Unit 2: Bacterial taxonomy

Principles and modern approaches of bacterial taxonomy. Basic idea about Hackel and Whittaker's kingdom concept and domain concept of Carl Woese

Unit 3: Morphology of Bacteria and Virus

Cell wall (Structure of peptidoglycan), Cell envelope (Cell membrane, Differences between gram-positive and gram-negative species, External capsule and glycocalyx, Plasmids and episomes. Nuclear material, Bacterial Chromosome (Fundamental differences with eukaryotic chromosome). Reserve materials (carbon and phosphate reserve, cyanophycin), Cytoplasmic inclusions (Chlorosome, magnetosome, carboxysome, gas vesicles, ribosome). Structural organization of viruses, Prions and viroids

Unit 4: Normal flora

Distribution of normal flora in the body: Skin, eye, mouth, intestinal tract, urino-genital tract, Beneficial functions of normal flora. Harmful effects of normal flora

Unit 5: Pathogenicity of Microorganisms

Bacterial pathogenesis: Entry to the host, Adherence to host cells, Invasiveness, Bacterial toxins Exotoxins, Endotoxins, Antigenic switching. Viral Pathogenesis: Cellular level (Cell death, Transformation, Cell fusion, Cytopathic effect). Initial infections: Routes of entry and dissemination to secondary sites, Typical secondary sites of localization, Virus shedding and mode of transmission; Factors involved in termination of acute infection

Unit 6: Infection of pathogens to human populations

Communicable, Non-communicable, Endemic, Epidemic, Pandemic and Sporadic

Unit 7: Diagnostic Microbiology and Bacteria culture

Koch's postulates, Sensitivity and specificity of test results, Principles and applications: Simple staining, Gram-staining, Acid-fast staining, Collection of specimens, Growth requirements and Growth factors, Oxygen requirement. Culture Media: Simple media, Complex media, Selective media and Enriched media

Unit 8: Genetic recombination in bacteria

Transformation, Conjugation- F+, F-, Hfr & F' strain, Transduction, Generalised & specialized types.

Unit 9: Microbial Diseases

Name of pathogen, symptoms, pathogenesis, mode of action & preventive measures of following diseases: Bacterial (Polio, Typhoid, Staphylococcal Food Poisoning), Viral (Dengue, AIDS)

Suggested Readings:

1. Alexander, M. (1977). Introduction to Soil Microbiology. John Wiley and Sons, New York.
2. Atlas, R. M. and Bartha, R. (1997). Microbial Ecology: Fundamentals and Applications, 4th ed.
3. Benjamin/ Cummings. Black, J. G. (2011). Microbiology: Principles and Explorations. 8th ed. John Wiley and Sons, New York.
4. Campbell, R. (1983). Microbial Ecology. 2nd ed. Oxford, Blackwell.

5. Pinehuk, G. (2003). Schaum's outline Series: Theory and Problems of Immunology.
6. McGrawHill.
7. Presscott, L. M., Harley, J. P. and Klein, D. A. (2011). Microbiology, 8th ed. McGrawHill, New York.
8. Schlegel, H. G. (1993). General Microbiology. 7th ed. Cambridge University Press.
9. Slonczewski, J.L. and Foster, J.W. (2009). Microbiology- An Evolving Science. Norton.
10. Stanier, R. Y., Adelberg, E. A. and Ingraham, J. L. (1986). General Microbiology. 5th ed. Macmillan.
11. Talaro, K. and Talaro, A. (1999). Foundations in Microbiology. 3rd ed. Dubuque, McGraw Hill.
12. Tortora, G. J., Funke, B. R., and Case. C. L. (2008). Microbiology. An Introduction. 9th ed. Benjamin/Cummings Publishing. Menlo Park Calif.
13. Voyleys, B. A. (2002). The biology of viruses, 2nd ed. McGraw-Hill.

DSE2P: Microbiology (Lab)

Credits 02

List of Practical:

1. Simple staining and Gram's staining of bacteria.
2. Preparation of liquid media (broth) and solid media for routine cultivation of bacteria.
3. Preparation of slant and stab.
4. Pure culture techniques: Spread plate, Pour plate and Streak plate
5. Biochemical test for characterization:
Catalase, Nitrate-reduction, Indole production, Methyl Red and Voges-Proskauer Test.
6. Microbiological examination of milk (Methylene blue reductase test).
7. Sugar fermentation test.

