

Vidyasagar University

Curriculum for B.Sc. (General) in Electronics [Choice Based Credit System]

Semester-I

Course	Course Code	Name of the Subjects	Course Type/ Nature	Teaching Scheme in hour per week			Credit	Marks
				L	T	P		
CC1 [DSC-1A]		C1T: Network analysis and Analog Electronics	Core Course-1	4	0	0	6	75
		C1P: Network Analysis and Analog Electronics		0	0	4		
CC2 [DSC-2A]	TBD	DSC-2A (other Discipline)	Core Course-2				6	75
CC3 [DSC-3A]	TBD	DSC-3A (other Discipline)	Core Course-3				6	75
AECC		English	AECC (Elective)	1	1	0	2	50
Semester Total							20	275

L=Lecture, **T**=Tutorial, **P**=Practical, **CC** = Core Course, **TBD** = To be decided, **AECC**= Ability Enhancement Compulsory Course

DSC-1 = Discipline Specific Core of Subject-1, **DSC-2** = Discipline Specific Core of Subject-2, **DSC-3** = Discipline Specific Core of Subject-3.

Semester-I
Core Courses (CC)

CC - 1 : NETWORK ANALYSIS AND ANALOG ELECTRONICS **Credits 06**

C1T : Network analysis and Analog Electronics **Credits 04**

Course Content :

Theory:

Circuit Analysis: Concept of Voltage and Current Sources. Kirchhoff's Current Law, Kirchhoff's Voltage Law. Mesh Analysis. Node Analysis. Star and Delta networks, Star-Delta Conversion. Principal of Duality. Superposition Theorem. Thevenin's Theorem. Norton's Theorem. Reciprocity Theorem. Maximum Power Transfer Theorem. Two Port Networks: h, y and z parameters and their conversion.

Junction Diode and its applications: PN junction diode (Ideal and practical)- constructions, Formation of Depletion Layer, Diode Equation and I-V characteristics. Idea of static and dynamic resistance, dc load line analysis, Quiescent (Q) point. Zener diode, Reverse saturation current, Zener and avalanche breakdown. Qualitative idea of Schottky diode. Rectifiers- Half wave rectifier, Full wave rectifiers (center tapped and bridge), circuit diagrams, working and waveforms, ripple factor and efficiency. Filter- Shunt capacitor filter, its role in power supply, output waveform, and working. Regulation- Line and load regulation, Zener diode as voltage regulator, and explanation for load and line regulation.

Bipolar Junction Transistor: Review of the characteristics of transistor in CE and CB configurations, Regions of operation (active, cut off and saturation), Current gains α and β . Relations between α and β . dc load line and Q point.

Amplifiers: Transistor biasing and Stabilization circuits- Fixed Bias and Voltage Divider Bias. Thermal runaway, stability and stability factor S. Transistor as a two port network, h-parameter equivalent circuit. Small signal analysis of single stage CE amplifier. Input and Output impedance, Current and Voltage gains. Class A, B and C Amplifiers.

Cascaded Amplifiers: Two stage RC Coupled Amplifier and its Frequency Response.

Feedback in Amplifiers: Concept of feedback, negative and positive feedback, advantages of negative feedback (Qualitative only).

Sinusoidal Oscillators: Barkhausen criterion for sustained oscillations. Phase shift and Colpitt's oscillator. Determination of Frequency and Condition of oscillation.

Unipolar Devices: JFET. Construction, working and I-V characteristics (output and transfer), Pinchoff voltage. UJT, basic construction, working, equivalent circuit and I-V characteristics.

Suggested Readings:

1. Electric Circuits, S. A. Nasar, Schaum's outline series, Tata McGraw Hill
2. Electrical Circuits, M. Nahvi & J. Edminister, Schaum's Outline Series, Tata McGraw-Hill
3. Electrical Circuits, K.A. Smith and R.E. Alley, Cambridge University Press
4. Network, Lines and Fields, J.D.Ryder, Prentice Hall of India.
5. Electronic Devices and Circuits, David A. Bell, 5th Edition, Oxford University Press.
6. Electronic Circuits: Discrete and Integrated, D.L. Schilling and C. Belove, Tata McGraw Hill
7. Electrical Circuit Analysis, Mahadevan and Chitra, PHI Learning
8. Microelectronic circuits, A.S. Sedra, K.C. Smith, A.N. Chandorkar, , 6th Edn., Oxford University Press.
9. J. Millman and C. C. Halkias, Integrated Electronics, Tata McGraw Hill
10. J. J. Cathey, Solved Problems in Electronics, Schaum's outline Series, Tata McGraw Hill

C1P: Practical: Network Analysis and Analog Electronics

Credits 02

At least 06 experiments from the following:

1. To familiarize with basic electronic components (R, C, L, diodes, transistors), digital Multimeter, Function Generator and Oscilloscope.
2. Measurement of Amplitude, Frequency & Phase difference using Oscilloscope.
3. Verification of (a) Thevenin's theorem and (b) Norton's theorem.
4. Verification of (a) Superposition Theorem and (b) Reciprocity Theorem.
5. Verification of the Maximum Power Transfer Theorem.
6. Study of the I-V Characteristics of (a) p-n junction Diode, and (b) Zener diode.
7. Study of (a) Half wave rectifier and (b) Full wave rectifier (FWR).
8. Study the effect of (a) C- filter and (b) Zener regulator on the output of FWR.
9. Study of the I-V Characteristics of UJT and design relaxation oscillator..
10. Study of the output and transfer I-V characteristics of common source JFET.
11. Study of Fixed Bias and Voltage divider bias configuration for CE transistor.
12. Design of a Single Stage CE amplifier of given gain.
13. Study of the RC Phase Shift Oscillator.
14. Study the Colpitt's oscillator.

Suggested Readings:

1. Electrical Circuits, M. Nahvi and J. Edminister, Schaum's Outline Series, Tata McGraw-Hill
2. Networks, Lines and Fields, J.D.Ryder, Prentice Hall of India.
3. J. Millman and C. C. Halkias, Integrated Electronics, Tata McGraw Hill
4. Allen Mottershead, Electronic Devices and Circuits, Goodyear Publishing Corporation.