

Vidyasagar University

Curriculum for B.Sc (General) in Chemistry [Choice Based Credit System]

Semester-I

Course	Course Code	Name of the Subjects	Course Type/ Nature	Teaching Scheme in hour per week			Credit	Marks
				L	T	P		
CC1 [DSC-1A]		C1T: Atomic structure, bonding, general organic chemistry & aliphatic hydrocarbons.	Core Course-1	4	0	0	6	75
		C1P: Atomic structure, bonding, general organic chemistry & aliphatic hydrocarbons.		0	0	4		
CC2 [DSC-2A]	TBD	DSC-2A (other Discipline)	Core Course-2				6	75
CC3 [DSC-3A]	TBD	DSC-3A (other Discipline)	Core Course-3				6	75
AECC		English	AECC (Elective)	1	1	0	2	50
Semester Total							20	275

L=Lecture, **T**=Tutorial, **P**=Practical, **CC** = Core Course, **TBD** = To be decided, **AECC**= Ability Enhancement Compulsory Course

DSC-1 = Discipline Specific Core of Subject-1, **DSC-2** = Discipline Specific Core of Subject-2,

DSC-3 = Discipline Specific Core of Subject-3.

Semester-I
Core Course (CC)

**CC-1: ATOMIC STRUCTURE, BONDING, GENERAL ORGANIC CHEMISTRY &
ALIPHATIC HYDROCARBONS** **Credits 06**

**C1T: Atomic Structure, Bonding, General Organic Chemistry & Aliphatic
Hydrocarbons**

Credits 04

Section A: Inorganic Chemistry-1 (30 Periods)

Atomic Structure: Review of: Bohr's theory and its limitations, dual behaviour of matter and radiation, de Broglie's relation, Heisenberg Uncertainty principle. Hydrogen atom spectra. Need of a new approach to Atomic structure.

What is Quantum mechanics? Time independent Schrodinger equation and meaning of various terms in it. Significance of ψ and ψ^2 , Schrödinger equation for hydrogen atom. Radial and angular parts of the hydrogenic wavefunctions (atomic orbitals) and their variations for $1s$, $2s$, $2p$, $3s$, $3p$ and $3d$ orbitals (Only graphical representation). Radial and angular nodes and their significance. Radial distribution functions and the concept of the most probable distance with special reference to $1s$ and $2s$ atomic orbitals. Significance of quantum numbers, orbital angular momentum and quantum numbers ml and ms . Shapes of s , p and d atomic orbitals, nodal planes. Discovery of spin, spin quantum number (s) and magnetic spin quantum number (ms).

Rules for filling electrons in various orbitals, Electronic configurations of the atoms. Stability of half-filled and completely filled orbitals, concept of exchange energy. Relative energies of atomic orbitals, Anomalous electronic configurations.

Chemical Bonding and Molecular Structure

Ionic Bonding: General characteristics of ionic bonding. Energy considerations in ionic bonding, lattice energy and solvation energy and their importance in the context of stability and solubility of ionic compounds. Statement of Born-Landé equation for calculation of lattice energy, Born-Haber cycle and its applications, polarizing power and polarizability. Fajan's rules, ionic character in covalent compounds, bond moment, dipole moment and percentage ionic character.

Covalent bonding: VB Approach: Shapes of some inorganic molecules and ions on the basis of VSEPR and hybridization with suitable examples of linear, trigonal planar, square planar, tetrahedral, trigonal bipyramidal and octahedral arrangements. Concept of resonance and resonating structures in various inorganic and organic compounds. MO Approach: Rules for the LCAO method, bonding and antibonding MOs and their characteristics for $s-s$, $s-p$ and $p-p$ combinations of atomic orbitals, nonbonding combination of orbitals, MO treatment of homonuclear diatomic molecules of 1st and 2nd periods (including idea of $s-p$ mixing) and heteronuclear diatomic molecules such as CO, NO and NO^+ . Comparison of VB and MO approaches.

Section B: Organic Chemistry-1 (30 Periods)

Fundamentals of Organic Chemistry

Physical Effects, Electronic Displacements: Inductive Effect, Electromeric Effect, Resonance and Hyperconjugation. Cleavage of Bonds: Homolysis and Heterolysis. Structure, shape and reactivity of organic molecules: Nucleophiles and electrophiles.

Reactive Intermediates: Carbocations, Carbanions and free radicals.

Strength of organic acids and bases: Comparative study with emphasis on factors affecting pK values. Aromaticity: Benzenoids and Hückel's rule.

Stereochemistry

Conformations with respect to ethane, butane and cyclohexane. Interconversion of Wedge Formula, Newmann, Sawhorse and Fischer representations. Concept of chirality (upto two carbon atoms). Configuration: Geometrical and Optical isomerism; Enantiomerism, Diastereomerism and Meso compounds). Threo and erythro; D and L; *cis* – *trans* nomenclature; CIP Rules: R/ S (for upto 2 chiral carbon atoms) and E / Z Nomenclature (for upto two C=C systems).

Aliphatic Hydrocarbons

Functional group approach for the following reactions (preparations & reactions) to be studied in context to their structure.

Alkanes: (Upto 5 Carbons). *Preparation:* Catalytic hydrogenation, Wurtz reaction, Kolbe's synthesis, from Grignard reagent. *Reactions:* Free radical Substitution: Halogenation.

Alkenes: (Upto 5 Carbons) *Preparation:* Elimination reactions: Dehydration of alkenes and dehydrohalogenation of alkyl halides (Saytzeff's rule); *cis* alkenes (Partial catalytic hydrogenation) and *trans* alkenes (Birch reduction). *Reactions:* *cis*-addition (alk. KMnO₄) and *trans*-addition (bromine), Addition of HX (Markownikoff's and anti-Markownikoff's addition), Hydration, Ozonolysis, oxymecuration-demercuration, Hydroboration-oxidation.

Alkynes: (Upto 5 Carbons) *Preparation:* Acetylene from CaC₂ and conversion into higher alkynes; by dehalogenation of tetra halides and dehydrohalogenation of vicinal-dihalides.

Reactions: formation of metal acetylides, addition of bromine and alkaline KMnO₄, ozonolysis and oxidation with hot alk. KMnO₄.

Suggested Readings :

1. Lee, J.D. *Concise Inorganic Chemistry* ELBS, 1991.
2. Cotton, F.A., Wilkinson, G. & Gaus, P.L. *Basic Inorganic Chemistry*, 3rd ed., Wiley.
3. Douglas, B.E., McDaniel, D.H. & Alexander, J.J. *Concepts and Models in Inorganic Chemistry*, John Wiley & Sons.
4. Huheey, J.E., Keiter, E.A., Keiter, R.L. & Medhi, O.K. *Inorganic Chemistry: Principles of Structure and Reactivity*, Pearson Education India, 2006.
5. Graham Solomon, T.W., Fryhle, C.B. & Snyder, S.A. *Organic Chemistry*, John Wiley & Sons (2014).

6. McMurry, J.E. *Fundamentals of Organic Chemistry*, 7th Ed. Cengage Learning India Edition, 2013.
7. Sykes, P. *A Guidebook to Mechanism in Organic Chemistry*, Orient Longman, New Delhi (1988).
8. Eliel, E.L. *Stereochemistry of Carbon Compounds*, Tata McGraw Hill education, 2000.
9. Finar, I.L. *Organic Chemistry* (Vol. I & II), E.L.B.S.
10. Morrison, R.T. & Boyd, R.N. *Organic Chemistry*, Pearson, 2010.
11. Bahl, A. & Bahl, B.S. *Advanced Organic Chemistry*, S. Chand, 2010.

CHEMISTRY LAB (Practicals):

C1P: Atomic Structure, Bonding, General Organic Chemistry & Aliphatic Hydrocarbons

Credits 02

Section A: Inorganic Chemistry - Volumetric Analysis

1. Estimation of sodium carbonate and sodium hydrogen carbonate present in a mixture.
2. Estimation of oxalic acid by titrating it with KMnO₄.
3. Estimation of water of crystallization in Mohr's salt by titrating with KMnO₄.
4. Estimation of Fe (II) ions by titrating it with K₂Cr₂O₇ using internal indicator.
5. Estimation of Cu (II) ions iodometrically using Na₂S₂O₃.

Section B: Organic Chemistry

1. Detection of extra elements (N, S, Cl, Br, I) in organic compounds (containing upto two extra elements)
2. Separation of mixtures by Chromatography: Measure the R_f value in each case (combination of two compounds to be given)
 - (a) Identify and separate the components of a given mixture of 2 amino acids (glycine, aspartic acid, glutamic acid, tyrosine or any other amino acid) by paper chromatography
 - (b) Identify and separate the sugars present in the given mixture by paper chromatography.

Suggested Readings:

1. Svehla, G. *Vogel's Qualitative Inorganic Analysis*, Pearson Education, 2012.
2. Mendham, J. *Vogel's Quantitative Chemical Analysis*, Pearson, 2009.
3. Vogel, A.I., Tatchell, A.R., Furnis, B.S., Hannaford, A.J. & Smith, P.W.G., *Textbook of Practical Organic Chemistry*, Prentice-Hall, 5th edition, 1996.
4. Mann, F.G. & Saunders, B.C. *Practical Organic Chemistry* Orient-Longman, 1960.