

# **VIDYASAGAR UNIVERSITY**



## **COMPUTER SCIENCE** (Honours & General)

**Under Graduate Syllabus**  
(3 Tier Examination Pattern)  
w.e.f. 2014-2015

**REVISED**

**Vidyasagar University**  
**Midnapore 721 102**  
**West Bengal**

**VIDYASAGAR UNIVERSITY**  
**3-YEAR DEGREE SYLLABUS IN COMPUTER SCIENCE (Honours)**

**PART – I**

**PAPER – I (TH) 100 Marks**

**Unit- 1:**

|                                       |          |
|---------------------------------------|----------|
| <b>GROUP –A:</b> Computer Fundamental | 15 Marks |
| <b>GROUP –B:</b> Programming in C     | 30 Marks |

**Unit-2:**

|                                    |          |
|------------------------------------|----------|
| <b>GROUP –A:</b> Graph Theory      | 15 Marks |
| <b>GROUP –B:</b> Numerical Methods | 15 Marks |
| <b>GROUP-C:</b> Operation Research | 15 Marks |

Internal Assessment – 10 Marks

**PAPER – II (TH) 100 Marks**

**Unit- 1:**

|                                       |          |
|---------------------------------------|----------|
| <b>GROUP –A:</b> Digital Electronics  | 30 Marks |
| <b>GROUP –B:</b> Discrete Mathematics | 15 Marks |

**Unit- 2:**

|                                            |          |
|--------------------------------------------|----------|
| <b>GROUP –A:</b> Basic Electronics         | 25 Marks |
| <b>GROUP- B:</b> Fundamental of Networking | 20 Marks |

Internal Assessment – 10 Marks

## **PART – II**

| <b>PAPER – III (TH)</b>                                           | <b>100 Marks</b> |
|-------------------------------------------------------------------|------------------|
| <b>Unit -1:</b>                                                   |                  |
| <b>GROUP –A:</b> Data Structure and Algorithm                     | 25 Marks         |
| <b>GROUP –B:</b> OOPs Using C++                                   | 20 Marks         |
| <b>Unit- 2:</b>                                                   |                  |
| <b>GROUP –A:</b> Operating Systems                                | 30 Marks         |
| <b>GROUP –B:</b> Software Engineering                             | 15 Marks         |
| Internal Assessment-                                              | 10 Marks         |
| <b>PAPER – IV (TH)</b>                                            | <b>100 Marks</b> |
| <b>Unit- 1:</b>                                                   |                  |
| Computer Architecture                                             | 45 Marks         |
| <b>Unit -2:</b>                                                   |                  |
| <b>GROUP –A:</b> Microprocessor and Interfacing                   | 25 Marks         |
| <b>GROUP –B:</b> System Programming (Assembler,<br>Loader,Linker) | 20 Marks         |
| Internal Assessment-                                              | 10 Marks         |

**PAPER – V (PR) 100 Marks**

**Unit 1:**

|                                                 |          |
|-------------------------------------------------|----------|
| <b>GROUP –A:</b> C Programming                  | 25 Marks |
| <b>GROUP –B :</b> Numerical Programming using C | 25 Marks |

**Unit 2:**

|                                                 |          |
|-------------------------------------------------|----------|
| <b>GROUP –A:</b> Digital Electronics            | 25 Marks |
| <b>GROUP –B:</b> Microprocessor and Interfacing | 25 Marks |

**PART – III**

**PAPER – VI (TH) 100 Marks**

**Unit -1:**

|                                                               |          |
|---------------------------------------------------------------|----------|
| <b>GROUP –A:</b> Fundamentals of Automata and Compiler Design | 25 Marks |
|---------------------------------------------------------------|----------|

|                       |          |
|-----------------------|----------|
| <b>GROUP –B:</b> DBMS | 20 Marks |
|-----------------------|----------|

**Unit -2:**

|                                                   |          |
|---------------------------------------------------|----------|
| <b>GROUP –A:</b> Introduction to JAVA Programming | 25 Marks |
| <b>GROUP –B:</b> Computer Graphics                | 20 Marks |

Internal Assessment- 10 Marks

**PAPER – VII (PR) 100 Marks**

**Unit- 1:**

|                                     |          |
|-------------------------------------|----------|
| <b>GROUP –A:</b> Programming in C++ | 25 Marks |
| <b>GROUP -B:</b> Computer Graphics  | 25 Marks |

**Unit- 2: RDBMS (ORACLE) 50 Marks**  
**PAPER – VIII (PR) 100 Marks**

**Unit- 1:**

JAVA Programming 30 Marks

**Unit -2:**

**GROUP –A: Seminar and Industrial Visit 20 Marks**

**GROUP –B : Project (Based on PHP/dot NET/Mobile Technology/Web Application/ Hardware Technology etc.) 50 Marks**

## **PART-I**

### **PAPER-I** **Theoretical** **F.M.-100**

**(University Examination: 90 & Internal Assessment : 10)**

**Unit-1**

**(45 Marks)**

**GROUP –A: Computer Fundamental** **15 Marks**

- ❖ Computer Basic: Definition and application of computers, softwares, hardware ,Generation of Computers, Types of Computers, I/O unit, Memory, Organization of Computer, Machine language, Assembly language & High level language, concept of algorithm and flow charts.
- ❖ Number system: Decimal, Binary, Octal, Hexadecimal number system, conversion from one number system to another. Signed and unsigned integers, r's and (r-1)'s complement, Binary arithmetic, fixed and floating point number representation, BCD arithmetic.

➤ **Reference Books:**

1. *Fundamentals of computers - Raja Raman. V, PHI.*
2. *Introduction to Computer Science,- ITL Education Solutions Limited, Pearson education.*
3. *Computer Fundamentals, Anita Goel,*
4. *Foundations of Computer Science By Ashok Arora*

**GROUP –B: Programming in C** **30 Marks**

- ❖ Introduction, basic structure, character set, keywords, Identifiers, constants, variables, Data type. Execution of some simple C programs.
- ❖ Operators and Expressions, evaluation and type conversion. Character reading and writing, formatted input and output. Decision making

(branching and looping) -Simple and nested IF, If-Else, switch-case, While, Do-While, for.

- ❖ Arrays -One and two dimensional. String handling with arrays - reading and writing, concatenation and comparison, string handling functions.
- ❖ User-defined functions, Recursion, call by value and call by reference.
- ❖ Structures and Union -definition and initialization, arrays of structure, arrays within structure, structure within structure, size of structure.
- ❖ Pointer- declaration and initialization, accessing variables through pointer, arithmetic pointer and arrays, strings, functions and Dynamic Memory Allocation.
- ❖ File handling –opening, reading, writing and closing text file.

➤ **Reference Books:**

1. *C Programming, Stephen Kochan*
2. *Programming with C, Schaum's Series*
3. *C Programming , V. Balaguru Swami*
4. *Let Us C, Yashwant Kanetkar*
5. *Programming in C: A Practical Approach, Ajay Mittal*

| <b>Unit -2</b>                | <b>(45 Marks)</b> |
|-------------------------------|-------------------|
| <b>GROUP –A: Graph Theory</b> | <b>15 Marks</b>   |

- ❖ Definition, finite and infinite graphs and undirected, incidence, degree, isolated vertex, pendant vertex, null graphs. Walks, paths and circuits, connected and disconnected graphs. Euler's graph. Hamiltonian paths and circuits, Tree, Bipartite graph, Shortest Spanning Tree- Kruskal algorithm, Prims algorithm, DFS, BFS.

➤ **Reference Books:**

1. *Narsingh Deo . Graph Theory and Applications, PHI*
2. *Kenneth H Rosen. "Discrete Mathematics and Its Applications, Tata McGraHill Publishing Company, New Delhi.*
3. *Robin J. Wilson, "Introduction to Graph Theory" Pearson Education Asia, New Delhi.*

**GROUP –B: Numerical Methods** **15 Marks**

- ❖ Different types of errors in computation: Sources of Errors, Significant figures-Absolute, Relative and Percentage errors.
- ❖ Finite differences: Forward and Backward differences.
- ❖ Interpolation: Newton's Forward interpolation, Newton's Backward interpolation and Lagrange interpolation.
- ❖ Numerical Integration: Derivation of general formula for numerical integration using Newton's forward difference formula, Trapezoidal rule Simpson's 1/3 rule and Simpson's 3/8 rule.
- ❖ Solution of Algebraic and Transcendental Equation: Bisection method, Iteration method, Newton-Raphson Method, Regula-Falsi Method.
- ❖ Solution of linear equation of the form  $AX=b$  : Gausson elimination, Gauss seidel method and Jacobi iteration method.
- ❖ Numerical solution of ordinary differential equations: Euler, Runge-Kutta.

➤ **Reference Books:**

1. *V. Rajaraman, Computer Oriented Numerical Methods - Prentice Hall Publication.*
2. *S. S. Sastry, Introductory methods of Numerical Analysis - Prentice Hall Publication.*

3. *Dr. B. S. Grewal : Numerical Methods in Engineering and Science.*
5. *Numerical Mathematical Analysis (By J.B.Scarborough)*
6. *Numerical Analysis & Algorithms, Pradeep Niyogi, TMH*
7. *Numerical Mathematical Analysis ,Mathews,PHI*
8. *C language and Numerical Methods ( By C.Xavier)*

**GROUP -C: Operation Research** **15 Marks**

- ❖ Formulations and graphical solution of (2 variables) canonical and standard terms of linear programming problem, simplex method, Big-M method, transportation and assignment problem, sequencing problem.

➤ **Reference Books:**

1. *Hamdy A.Taha : Operation Research – An introduction 5th edition, PHI., New Delhi–1996.*
2. *Ravindran: Operation Research Principle and Practice, Wiley Publication*
3. *Ackoff, R.L. and Sasieni, M.W: Fundamentals of operation research, John Wiley and, sons, Newyork*
4. *Charnes A. Cooper W. and Hendersen A : introduction to linear programming, John Wiley Andsons, Newyork 1953.*
5. *Srinath I.s.: PERT and CPM Principles and applications, affiliated east press pvt. Ltd., newyork1973.*
7. *S.Kalavathy: Operations Research – Second Edition – Vikas Publishing House Pvt. Ltd., 2002.*

**PAPER-II**  
**Theoretical**  
**F.M.-100**  
**(University Examination: 90 & Internal Assessment : 10)**

|                                      |                   |
|--------------------------------------|-------------------|
| <b>Unit-1:</b>                       | <b>(45 Marks)</b> |
| <b>GROUP –A: Digital Electronics</b> | <b>30 Marks</b>   |

- ❖ Basic Concept- Boolean Algebra.
- ❖ Alphanumeric codes: ASCII, EBCDIC, gray code, BCD code, Excess-3, Extended ASCII code.
- ❖ Digital System Design : Logic gates, Universal Gates, fundamental gates, De-Morgan's law, POS, SOP, Minimization technique: K-map, De-Morgan theorem.
- ❖ Logic circuit design: encoders, decoders, parity checker, code converters, comparators, adder, subtractor, multiplexers, de-multiplexers, parity generators.
- ❖ Basic Sequential Circuits: Flip Flops - RS, D, JK, T, master-slave. Multivibrators : Astable and monostable (using IC 555), Registers and Shift registers, counters: synchronous and asynchronous.
- ❖ Memory Devices: RAM, ROM, PROM, EPROM, EEPROM.
- ❖ Digital-Analog converters: D/A converters - basic, ladder, A/D converters - counter, successive approximation.

➤ **Reference Books:**

1. *Fundamentals of Digital Circuits, Anand Kumar, PHI*
2. *Digital Electronics, Tokheim, TMH*
3. *Digital Electronics, S. Rangnekar, ISTE/EXCEL*
4. *Digital Logic & Computer Design, M. Morris Mano*
5. *Introduction to Digital Computer Design, An, 5th ed., Rajaraman & Radhakrishnan*
6. *Digital Electronics, P. Raja, Scitech Pub.*

**GROUP-B: Discrete Mathematics****15 Marks**

- ❖ Set Theory : Introduction, Definition & Concepts, Representation of Sets, Finite Sets, Infinite Sets (Definition), Set Operations--- Union, Intersection, Addition, Difference, Symmetric Difference, De Morgan's Law, Subsets, Cartesian product, relations & functions, injective, surjective and bijective functions, Equivalence relation.
- ❖ Algebra of logic: Propositions and logic operations, truth tables and propositions generated by set, equivalence and implication laws of logic, mathematical induction.
- ❖ Recursion and recurrence: The many faces of recursion, recurrence, relations and some common recurrence relations, generating functions.

**➤ Reference Books:**

1. *Discrete mathematics and graph theory: Satyanarayana and Prasad.*
2. *Discrete mathematics with graph theory -3<sup>rd</sup> Ed.: Goodaire and parmenter.*
3. *Discrete mathematics and graph theory, 2<sup>nd</sup> Ed.: Biswal*
4. *Discrete mathematics : Rajendra Akerkar and Rupali Akerkar.*
5. *Discrete mathematics: Babu Ram*
6. *BCA Mathematics : J. Sengupta, S. Roy, S.Chand Pub.*

**Unit-2:****(45 Marks)****GROUP –A: Basic Electronics****25- Marks**

- ❖ Electron Tubes: The Vacuum Diode ,Diode Characteristics ,The Vacuum Triode, Triode Characteristics. Elementary physics of semiconductors : P.N junction diodes, Zener diodes, BJT, FET, MOSFET. Switching characteristics of diodes and transistors,

Applications of diodes in rectification. Amplifiers concept of negative and positive feedback. Oscillators, R-C, Regulated Power Supply: Inverters: Operational amplifier

### **Group B: Fundamental of Networking**

**20 Marks**

- ❖ Introduction to Data Communication and network, Overview of ISO-OSI model & TCP/IP Model.
- ❖ Physical layer: Network Topology, types of network, network protocols, Transmission Mode. Multiplexing: FDM, WDM & TDM. Transmission media: Guided media, Unguided media. Circuit & Packet Switching.
- ❖ Data Link Layer: Error Detection - Type of Error, Detection, Error Correction, framing, Flow and error control, CRC, Hamming Code.
- ❖ Network Layer: IP Addressing, IPV4, routing, Gateway.
- ❖ Application Layer: DNS, SMTP, FTP, HTTP, WWW.

➤ **Reference Books:**

1. *Data Communication & Networking – Behrouz A. Forouzan, TMH*
2. *Computer Network – A.S Tanenbaum, Pearson Education*
3. *Computer Networks- kundu – PHI*
4. *Computer Network – Rajesh – Vikash*

**PART-II**  
**PAPER-III**

**Theoretical** **F.M.-100**  
**(University examination: 90 & Internal Assessment : 10)**  
**Unit-1:** **(45 Marks)**

**GROUP –A: Data Structure and Algorithm** **25 Marks**

- ❖ Definition: Concepts of data types. Elementary structures, Data types and their interpretation.
- ❖ Complexity: Asymptotic notation, Time and Space complexity, Big-O, Omega, Theta etc., Advantages and Disadvantages. Big O Notation, Big-omega and Big-theta notations, Growth of Functions.
- ❖ Finding time complexity of well-known algorithms like- Heap sort, Quick sort, Search algorithm etc.
- ❖ Arrays: Types, Memory representation. Address translation. Functions of single and multi dimensional arrays with examples.
- ❖ Linked Structures: Definition. Single and doubly linked list (non-circular and circular). List manipulation with pointers: Insertion and deletion of elements. Polymomial addition.
- ❖ Stacks and Queues: Definition. Representation. Uses and Applications, Insertion and deletion of elements. Implementation of stack and queue as an array and Linked list. Infix ,postfix and prefix notation. to postfix notation: conversion and evaluation. Application of queues. Deque and priority queue.
- ❖ Recursion: Divide and Conquer, Elimination of Recursion, When not to use recursion?
- ❖ Binary trees: Definition, extended binary trees, Traversing binary tree ,Binary search tree, Heap , Internal and external path length , Minimum and maximum path length of a binary tree, Huffman's algorithm, Height Balance tree,
- ❖ Searching: Linear and binary search, Performance and complexity.

- ❖ Hashing: Concepts, Advantages and disadvantages. Different types of hash functions, Collision and Collision
- ❖ Sorting: Terminology, Performance Evaluation, Different Sorting Techniques (Bubble, Insertion, Selection, Merge, Quicksort, Heap sort, Radix sort).

➤ **Reference Books:**

1. *Data Structure using C – Rajni Jindal – Umesh Publication*
2. *Data Structure using C – B. Baluja Dhanpatrai Publication*
3. *Classic Data Structures, 2nd ed., Samanta*
4. *Data Structures Using C and C++, 2nd ed., Langsam, Augenstein & Tenenbaum*

**GROUP –B: OOPs Using C++**

**20 Marks**

- ❖ Introduction to OOPs and C++ Element: Introduction to OOPs, Features & Advantages of OOPs, Difference with procedure oriented programming, Different element of C++ (Tokens, Keywords, Identifiers, Variable, Constant, Operators, Expression, String).
- ❖ Program Control Statements: Sequential Constructs, Decision Making Construct, Iteration / Loop Construct, Arrays, Functions (User defined Function, Inline Function, Function Overloading).
- ❖ Class, Object, Constructor & Destructor: Class, Object, Modifiers (Private, Public & Protected), DataMember, Member Function, Static Data Member, Static Member Function, Friend Function, Constructor (Default Constructor, Parameterized Constructor and Copy Constructor), Destructor.
- ❖ Operator Overloading: Definition, Unary & Binary Operator Overloading.
- ❖ Inheritance & Polymorphism: Inheritance (Single Inheritance, Multiple Inheritance, Multilevel Inheritance, Hierarchical Inheritance,

Hybrid Inheritance), Virtual Base Class, Abstract Class, Introduction to Polymorphism (Runtime Polymorphism, Compile time Polymorphism), Virtual Function.

- ❖ Exception Handling.

➤ **Reference Books:**

1. *E. Balaguruswami – Object Oriented programming with C++*
2. *Kris James – Success with C++*
3. *David Parsons – Object Oriented programming with C++*
4. *D. Ravichandran – Programming in C++*
5. *Dewhurst and Stark – Programming in C++*
6. *Venugopal, Ravishankar, Rajkumar – Mastering C++*

|                                    |                   |
|------------------------------------|-------------------|
| <b>Unit-2</b>                      | <b>(45 Marks)</b> |
| <b>GROUP –A: Operating Systems</b> | <b>30 Marks</b>   |

- ❖ Introduction: Operating system functions, evaluation of O.S., Different types of O.S, single user, multi user, GUI, multi-programmed, multi processing, multi tasking, batch, time-sharing, real-time, distributed.
- ❖ Processes: Concept of processes, process state, PCB, co-operating processes, inter- process communication.
- ❖ CPU scheduling: Definition, preemptive & non-preemptive scheduling, scheduling algorithms (FCFS, SJF, RR, and priority), long-term scheduler, short-term scheduler, medium-term scheduler & multi-level feedback queue.
- ❖ Process Synchronization: background, critical section problem, critical region, classical problems of synchronization, semaphores.
- ❖ Deadlocks: Definition, necessary condition, methods for handling deadlocks, deadlock prevention, deadlock avoidance, deadlock detection, recovery from deadlock, algorithms.

- ❖ Memory Management: background, logical vs. physical address space, swapping, contiguous memory allocation, paging, page replacement algorithms, Belady's anomaly, segmentation, Virtual Memory.
- ❖ Threads: overview, benefits of threads, user and kernel threads.

➤ **References Books:**

1. *Joshi .Operating System, Wiley Publication.*
2. *Tanenbaum A.S., "Operating System Design & Implementation", Practice Hall NJ.*
3. *Silbersehatz A. and Peterson J. L., "Operating System Concepts", Wiley.*
4. *Doeppner: Operating System in Depth, Wiley Publication.*
5. *Stalling, William, "Operating Systems", Maxwell McMillan International Editions, 1992.*
6. *Operating System, Rajib Chopra, S. Chand Pub.*

**GROUP –B: Software Engineering**

**15 Marks**

- ❖ Introduction of Software Engineering, Why we study Software Engineering? Difference between Software Engineering & other engineering.
- ❖ Basic Concepts of Models: Waterfall Model, Spiral Model, system life cycle.
- ❖ System Design: Data Flow Diagrams (DFD), ER diagram, Data Dictionary, Pseudo code, Top-Down And Bottom-Up design, Decision tree, decision table, Functional vs. Object- Oriented approach, quality assurance and verification, validation, maintenance and documentation.
- ❖ Testing: Alpha, Beta, Acceptance, Black-Box and White-Box testing.

➤ **Reference Books:**

1. *Sommerville I: Software Engineering, Addison Wesley*
2. *Rajib Mall: Software Engineering, PHI*
3. *Vans Vlet, Software Engineering, SPD*
4. *Uma, Essentials of Software Engineering, Jaico*
5. *Sommerville, Ian – Software Engineering, Pearson Education*
6. *Benmenachen, Software Quality, Vikas*
7. *IEEE Standards on Software Engineering.*
8. *Ghezzi C. Jazayeri M and Mandrioli: Fundamentals of software Engg. , PHI*
9. *Behforooz, Software Engineering Fundamentals, OUP*
10. *Pankaj Jalote – An Integrated Approach to Software Engineering, NAROSA.*
11. *Kane, Software Defect Prevention, SPD*

**PAPER-IV**  
**Theoretical F.M.-100**  
**(University Examination: 90 & Internal Assessment : 10)**

**Unit-1:** **(45 Marks)**  
**Computer Architecture** **45 Marks**

- ❖ Instruction: Operation Code and Operand. Zero, One, Two and Three address instruction. Instruction types. Addressing modes. Stack organization.
- ❖ Memory: Types of Memory. Memory Hierarchy: CPU Register. Cache Memory, Primary Memory, Secondary
- ❖ Memory. Virtual Memory (Introduction only). Memory organization - Linear two-dimensional Von Neumann vs
- ❖ Harvard Architecture, Different storage technology.
- ❖ I/O system organization and interfacing. Bus: SCSI, PCI, USB (introduction and comparative study); Tri State
- ❖ Devices, Bus Arbitration.
- ❖ Fixed and Floating Point Arithmetic: Addition, Subtraction, Multiplication & Division.
- ❖ ALU - Combinational ALU, Two's Complement Addition, Subtraction unit
- ❖ Control Unit: Control Structure and Behavior, Hardwired Control and Micro programmed Control: Basic Concept,
- ❖ Parallelism in Microinstruction, I/O: Polling, Interrupts, DMA, I/O Bus and Protocol.
- ❖ RISC and CISC.

➤ **Reference Books:**

1. *Computer Organization – V. Carl Hamacher & Zvonko G. Vrancic – McGraw Hill*

2. *Computer Architecture & Logic Design – Thomas C. Barty - McGraw Hill*
3. *Computer Organization – J.P. Heys*
4. *Digital Computer – Morris Mano – Pearson.*

|                                                 |                   |
|-------------------------------------------------|-------------------|
| <b>Unit-2:</b>                                  | <b>(45 Marks)</b> |
| <b>GROUP –A: Microprocessor and Interfacing</b> | <b>25 Marks</b>   |

- ❖ Introduction to microprocessors: Features, Programmers model, external & internal organization.
- ❖ 8085 Architecture: 8085 Architecture & organization, Instruction cycles, machine cycles and T-states, address decoding Techniques, minimum system design, 8085 Instruction set: Instruction format, addressing modes, classification of instruction set., 8085 Programming: Assembly language programming:- basic structure, data transfer, arithmetical, logical, transfer of control & Miscellaneous instruction types.
- ❖ Stack & subroutines: Stack operations, limitations, subroutine concepts,
- ❖ subroutine design, delay subroutine design & applications.
- ❖ Interrupts: Requirements, single level interrupt, multilevel interrupt & vector interrupt system, 8085 interrupt structure and its operation, 8259A interrupt controller.
- ❖ I/O interfacing: Features, organization & operating modes of 8255. Basic operation of IC 8155, 8254, 8237.

➤ **Reference Books:**

1. *Microprocessor system Lbu & Gibson Computer Interfacing & applications Venugopal, BPB*
2. *8085 microprocessor : programming and interfacing-Srinath N K.*

3. *Microprocessor 8085 : architecture, programming and interfacing*-  
*Wadhwa Ajay*
4. *Microprocessor 8085 and its interfacing*-*Mathur Sunil*
5. *Microprocessor architecture, programming and applications with 8085/8085A, Wiley eastern Ltd, 1989*  
*by Ramesh S. Gaonkar.*
6. *Intel Corp: The 8085 / 8085A. Microprocessor Book – Intel marketing communication, Wiley inter science publications, 1980.*
7. *An introduction to micro computers Vol. 2 – some real Microprocessor – Galgotia Book Source, New Delhi by Adam Osborne and J. Kane*

**GROUP –B: SystemProgramming 20 Marks**  
**(Assembler, Loader, Linker )**

- ❖ Assembler: 1-pass and 2-pass; different tables; table management; code generation; errors, object model, code module, cross assembler, macro assembler; overviews, algorithms, macro within macro. Simple design,
- ❖ Loaders and linkers : Functions, storage allocation, library management. Absolute, BSS, relocating, direct linking. Binders and linkage editors, dynamic loading and linking. Systems utilities; Editor -line, screen, debugger.

➤ **Reference Books:**

1. *Systems Programming, Donovan, Tata Mc Graw Hill*
2. *System Programming, Dhamdhere (2nd Revised Edition), Tata Mc Graw Hill*
3. *System software, Author: Chattopadhyay Santanu*
4. *System software : an introduction to systems programming, Author : Beck Leland L*

**PAPER – V (PR)**  
**Practical F.M.-100**

| <b>Unit-1</b>                                                                                   | <b>(50 Marks)</b> |
|-------------------------------------------------------------------------------------------------|-------------------|
| <b>GROUP –A: C Programming</b>                                                                  | <b>25 Marks</b>   |
| 1. Program on control statement (IF, Switch, Loops, Arrays, Functions, Structures, etc)         |                   |
| 2. Searching: Linear & Binary Search.                                                           |                   |
| 3. Sorting: Bubble, Selection, Insertion, Quick & Merge sort, etc.                              |                   |
| 4. String manipulation.                                                                         |                   |
| 5. Files (Read & write).                                                                        |                   |
| <b>GROUP –B: Numerical Programming using C</b>                                                  | <b>25 Marks</b>   |
| 1. Solution of equations by Bisection, Iteration, Regular-falsi, Newton Raphson.                |                   |
| 2. Solution of system of equations by Gauss's elimination, Gauss Seidel.                        |                   |
| 3. Interpolation: Newton forward and Backward and Lagrange interpolations.                      |                   |
| 4. Integration: Trapezoidal, Simpson's $1/3^{\text{rd}}$ & $3/8^{\text{th}}$ integration rules. |                   |
| 5. Ordinary Differential Equation: Euler's & Runga Kutta method.                                |                   |
| <b>Unit-2:</b>                                                                                  | <b>(50 Marks)</b> |
| <b>GROUP –A: Digital Electronics</b>                                                            | <b>25 Marks</b>   |
| <b>Combinational Circuits:</b>                                                                  |                   |
| 1. Verification of Gates,                                                                       |                   |
| 2. Half/Full Adder/Subtractor,                                                                  |                   |
| 3. Parallel Adder/Subtractor,                                                                   |                   |
| 4. Excess-3 to BCD & Vice Versa,                                                                |                   |

5. Binary-Grey & Grey-Binary Converter,
6. MUX/DEMUX,
7. MUX/DEMUX using only NAND Gates,
8. Comparators ,
9. Encoder/Decoder, Design a seven-segment display unit.

### **Sequential Circuits:**

1. Realize S-R, D, J-K, J-K master slave and T flip-flop using basic gates (NAND and NOR).
2. Study the undefined state in S-R flip-flop.
3. Implement a serial adder using Shift Registers, Flip-flops and other logic gates.
4. Design a 4-bit shift register (shift left and shift right) using flip-flops.
5. Design MOD counters using JK master slave flip-flop.
6. Design asynchronous and synchronous counters (3 bit and 4bit) using JK master slave flip-flop.
7. Design decade counter using JK master slave flip-flop.
8. Study the functional characteristics of RAM IC chip. Study of open collector and tri-state output. Use 74189, 7489, 2114 or any available chip.

### **GROUP –B: Microprocessor and Interfacing**

**25 Marks**

#### **Microprocessor**

**(15 Marks)**

1. Data movement between register -register, register-memory, memory-memory.
2. Arithmetic operations on single byte, word and multi-byte integer, signed and hexadecimal operands.
3. Multiplication of byte, word by successive addition, shifts and adds method.

4. Ordered arrangement of set of operands.
5. Bubble sort of a group of byte, Sequential and binary search.
6. Fibonacci sequence.
7. Evolution of simple mathematical expression.
8. Highest and lowest number from a list of byte.
9. Negative and positive number from a list of byte.
10. Block replacement.
11. Code conversion.
12. Parity Generator.
13. Delay Routines.
14. Programming related SID and SOD instruction.

### **Interfacing using 8255 (10 Marks)**

1. Use of 8255 indifferent and testing with LEDs, Seven Segment Displays.
2. Display of alphanumeric characters on seven segment displays.
3. Matrix keyboard interfacing and identification of the keys.
4. Generating of square wave through 8255 port.

**PART-III**  
**PAPER-VI**  
**Theoretical F.M.-100**  
**(University examination: 90 & Internal Assessment : 10)**  
**Unit-1: (45 Marks)**

## GROUP -A:

**Fundamentals of Automata & Compiler Design** **25 Marks**

- ❖ AUTOMATA THEORY: Review of finite automata, regular sets, Context free grammars & languages, Moore & Mealy state machines, their capabilities & limitations. Deterministic & Non-Deterministic FSM's, CNF, GNF, Push-down stack & memory machine.
- ❖ Basic concepts of programming language, Compiler, Interpreter, Cross Compiler. DFA, NDFA, conversion from NDFA to DFA. Grammars & languages. Structure of a compiler, phases of compilation, such as Lexical analysis, Basic parsing techniques such as shift reduce parsing, operator precedence
- ❖ Parsing, Top-down parsing-LL(1), bottom-up parsing-LR, SLR, CLR, LALR. code generation, code optimization, table management, storage management, recursion.
- ❖ Symbol tables: Contents, data structures, representation of scope. Syntax directed translation.

## ➤ Reference Books:

1. Aho, Sethi, Ullman - “Compiler Principles, Techniques and Tools” - Pearson Education.
2. Holub - “Compiler Design in C” - PHI.
3. O.G.Kakde-Comprehensive Compiler Design,Laxmi Publication.

## GROUP –B: DBMS

**20 Marks**

- ❖ Overview of DBMS: Data, Information, Entity, Attributes, Database, DBMS, Data Independence, DBA, DBA Roles. DDL, DML, DBMS Architecture, Different kind of DBMS Users, Data Dictionary, Types of Database Languages, Advantage & Disadvantage of Database, Database V/S File base.
- ❖ Data Models: Hierarchical, Network and Relational Model, Data Definition and Data Manipulation; Constructs in each of the three models, A Comparison of Three Models, Concept of Keys (Super Keys, Candidate Keys, Primary Key, Alternate Key, Foreign Key), Relational Algebra, Different Types of Join (Theta Join, Equi Join, Natural Join, Inner Join and Outer Join), Simple and Complex Queries using Relational Algebra.
- ❖ Structured Query Languages (SQL): Create Simple Queries Using (Where, Like, Group By, Having, Order By), View table Structure, Temporary Tables.
- ❖ Database Design: ANSI/SPARC 3-Level Architecture, Conceptual Model, Logical Model, Physical Model, Entity, Relational Model, ER Diagram, Strong and Weak Entities, Generalization, Specialization and Aggregation. Loss-Less join decomposition; Interface rules; Functional Dependencies.
- ❖ Normalization: Concept, 1NF, 2NF, 3NF, BCNF.
- ❖ File organization: Serial, Sequential, indexed sequential, random.

➤ **Reference Books:**

1. *The complete reference-By Coach and loney*
2. *A Beginners guide- By Abbey and corney*
3. *Database System-Elmasri and Navathe*
4. *Database system concepts- Silberschatz Abraham Korth Henry F. Jt. auth. Sudarshan S. Jt. Auth.*
5. *DBMS, Rajib Chopra, S. Chand Pub.*

6. Database management system oracle SQL and PL/SQL- Das Gupta  
Pranab Kumar

**Unit-2:** **(45 Marks)**  
**GROUP –A: Introduction to JAVA Programming** **25 Marks**

- ❖ Introduction to Java - Features of Java - Object Oriented Concepts - Data Types - Variables - Arrays - Operators - Control Statements- Input and output-Scanner and System class-print(),println(), and printf() methods.
- ❖ Classes - Objects - Constructors - Overloading method - Access Control - Static and fixed methods - String Class - Inheritance - Interfaces -Overriding methods - Using super-This- Abstract class – Wrapper class.
- ❖ Packages - Access Protection - Importing Packages - Exception Handling - Throw and Throws - Thread - Synchronization - Runnable Interface - Inter thread Communication – Multithreading - I/O Streams - File Streams - Applets – Introduction to Java API Packages(java.lang and java.util )

**GROUP –B: Computer Graphics** **20 Marks**

- ❖ Introduction to Computer Graphics and Graphics Systems: Overview of Computer Graphics, RGB color model, Plotters, Printers, Digitizers, Light pens, etc.; Active and Passive graphics devices; Computer Graphics Software.
- ❖ Scan Conversion: Points and Lines, Line Drawing Algorithms; DDA Algorithm, Bresenham's Line Algorithm, Circle Generation Algorithm; Ellipse Generating Algorithm; Scan Line Polygon, Fill Algorithm, Boundary Fill Algorithm, Flood Fill Algorithm.

- ❖ 2D Transformation and Viewing: Basic Transformations--- Translation, Rotation, Scaling; Matrix Representations and homogeneous coordinates, Transformations between coordinate systems; Reflection, Shear; Transformations of points, lines, parallel lines, intersecting lines. Viewing pipeline, Window to viewport coordinate transformation; Clipping Operations--- Point clipping, Line clipping, Clipping circles, polygons and ellipse.

➤ **Reference Books:**

1. *Procedural & Mathematical Elements in Computer Graphics, Rogers, TMH*
2. *Computer Graphics, Hearn & Baker, PHI*
3. *Introduction to Computer Graphics, A. Mukherjee, VIKAS*
4. *Fundamentals of Computer Graphics & Multimedia, Mukherjee, PHI*
5. *Computer Graphics, Bhandari & Joshi, EPH*
6. *Introduction to Java – Balaguruswami*
7. *Thinking in Java – Bruce Eckel*
8. *Java Cookbook – Ian Darwain, O'Reily Pub.*
9. *Foundation of Java for ABAP Programmes – Alistair Rooney, Apress.*

## **PAPER – VII (PR)**

**Practical  
Unit-1**

**F.M.-100  
(50 Marks)**

**GROUP –A: Programming in C++** **25 Marks**

- ❖ Simple C++ program based on control statement (IF, Switch, LOOP), Arrays, Functions(User defined Function, Inline Function, Function Overloading) using class and objects, Static Data Member, Static Member Function, Friend Function, constructors and destructors; operator overloading. Inheritance (Single, Multiple, Multilevel & Hybrid Inheritance), Virtual Base Class, Polymorphism, Virtual Function, Exception Handling.

**GROUP-B: Graphics** **25 Marks**

- ❖ 2-D Geometry -Use of library graphics function in C or C++, Area fill attributes -fill styles, pattern fill, fill colors, Text attributes : size, front style, front colors, front direction in C or C++.
- ❖ Line draw algorithm: DDA Algorithm, Bresenham's line draw Algorithm, Parallel line algorithm, Midpoint circle algorithm midpoint ellipse algorithm. Transformation.

**Unit-2: (50 Marks)**  
**GROUP –A: RDBMS (ORACLE) 50 Marks**

- ❖ Creating Database: Creating a Database, Creating a Table, Specifying Relational Data Types.
- ❖ Table and Record Handling: INSERT statement, Using SELECT and INSERT together, DELETE, UPDATE, TRUNCATE statements, DROP, ALTER statements.
- ❖ Retrieving Data from a Database: The SELECT statement, Using the WHERE clause, Using Logical Operators in the WHERE clause Using IN, BETWEEN, LIKE , ORDER BY, GROUP BY and HAVING Clause Using Aggregate Functions, Combining Tables Using JOINS, Sub-queries.

**PAPER – VIII (PR)**  
**Practical F.M.-1OO**

**Unit-1:** **(30 Marks)**  
**JAVA Programming** **30 Marks**

1. Simple Java program base on control statement (IF, Switch, LOOP)
2. Assignments on class, constructor, overloading, inheritance, Interface, overriding etc.
3. Assignment on array.
4. Assignment on creating and accessing package.

**Unit-2** **(70 Marks)**  
**GROUP –A : Seminar & Industrial Visit** **20 Marks**

An Industrial Visit would be organized and students would give a seminar on current Technology.

**GROUP –B: Project (Based on PHP/dot NET/Mobile Technology/Web Application/Sensor based micro-controller or 8085-86 Microprocessor etc.)** **50 Marks**

- ❖ Project Based on PHP/dot NET/Mobile Technology/Web Application/Sensor based micro-controller or 8085-86 Microprocessor etc. and guided by faculty member of the respective college. For External project at least one internal guide is require for each project. One faculty member cannot guide more than three (3) projects. Individual project is preferred. In case of group project not more than three students participate.

## **3 Year Degree Course Syllabus**

### **Computer Science (General)**

#### **PART – I**

##### **PAPER-I (TH) 100 Marks**

|                                        |          |
|----------------------------------------|----------|
| <b>GROUP - A:</b> Computer Fundamental | 20 Marks |
| <b>GROUP - B:</b> Digital Electronics  | 20 Marks |
| <b>GROUP - C:</b> Programming in C     | 25 Marks |
| <b>GROUP - D:</b> Data Structure       | 25 Marks |
| Internal Assessment –                  | 10 Marks |

#### **PART – II**

##### **PAPER –II 100 Marks**

|                                             |          |
|---------------------------------------------|----------|
| <b>GROUP – A (TH)</b>                       |          |
| Unit-I: Basic concepts of Operating Systems | 20 Marks |
| Unit- II: Data Base Management Systems      | 25 Marks |
| Internal Assessment –                       | 05 Marks |

##### **GROUP – B (PR)**

|                                       |          |
|---------------------------------------|----------|
| Data Base Management Systems (ORACLE) | 40 Marks |
| Practical Note Book & VIVA            | 10 Marks |

##### **PAPER -III (PR) 100 Marks**

|                                                       |          |
|-------------------------------------------------------|----------|
| <b>GROUP – A:</b> Digital Electronics                 | 25 Marks |
| <b>GROUP – B:</b> Programming in C and Data Structure | 35 Marks |
| <b>GROUP – C:</b> MS-Word , Excel and PowerPoint      | 20 Marks |
| Practical Note Book & VIVA                            | 20 Marks |

## **PART – III**

### **PAPER –IV** **100 Marks** **GROUP –A (TH)**

|                            |                 |
|----------------------------|-----------------|
| Unit-I: Computer Networks  | 25 Marks        |
| Unit-II : OOPs using C++   | 20 Marks        |
| Internal Assessment –      | 05 Marks        |
| <b>GROUP – B (PR)</b>      | <b>50 Marks</b> |
| Programming in C++         | 25 Marks        |
| Practical Note Book & VIVA | 05 Marks        |
| Seminar /Project           | 20 Marks        |

## COMPUTER SCIENCE (General)

### PART-I

### PAPER -I

**Theoretical**

**F.M. -100**

(University examination: 90 & Internal Assessment in College: 10)

#### **Group-A: Computer Fundamental** **20 Marks**

Brief introduction of computers generations, Types of computer, Computer system -CPU (ALU and control unit), I/O units, Primary and secondary storage, Machine language, Assembly language and High level language, Types of software, Concept of algorithm and flowchart.

➤ **Reference Books:**

1. *Fundamentals of Digital Circuits, Anand Kumar, PHI*
2. *Raja Raman. V: Fundamentals of computers, PHI*

#### **Group -B: Digital Electronics** **20 Marks**

Number system: Decimal, Binary, Octal, Hexadecimal number systems, conversion from one number system to another. Signed and unsigned integers, r's and (r-1)'s complement, Binary arithmetic, fixed and floating point number representation, BCD arithmetic.

Bit, Byte, Nibble, Word, Basic structure of Computer-I/O unit, Arithmetic Logical Unit, Memory Unit, Control Unit, Peripheral devices -different of I/O Units, Dot-matrix printer, Laser printer, Floppy disk, magnetic tape, Magnetic disk, Memory devices ROM, RAM, Serial Access and Direct Access memories.

Boolean Algebra: Postulates and Theorems, OR, AND, NOT operators, Truth tables, Boolean identities, De Morgan's theorems. Logic gates -AND, OR, NOT, NAND, NOR Exclusive-OR Boolean functions, Half-Adder, Full Adder, Memory Circuits -Flip-Flop.

➤ **Reference Books:**

1. *Fundamentals of Digital Circuits, Anand Kumar, PHI*
2. *Digital Electronics, Tokheim, TMH*
3. *Digital Electronics, S. Rangnekar, ISTE/EXCEL*
4. *Digital Logic & Computer Design, M. Morris Mano*
5. *Introduction to Digital Computer Design, An, 5th ed., Rajaraman & Radhakrishnan*
6. *Digital Electronics – P. Raja*

**Group -C: Programming in C**

**25 Marks**

C - Language: Basics, Types of operations and expressions, Variable names, Data type, Arithmetic, relational and logical operators. Type conversion. Bit wise logical operators and conditional expressions.

Control Flow: Statements and blocks, If-else, else-if, switch statement, while, for and do-while loop, break, continue and goto statements. Functions: Functions, arguments, auto, external, static and register variables, recursion.

Arrays: Basic Concepts, Memory Representation, One Dimensional Arrays, Two Dimensional Arrays

Pointers: Basic Concepts, &, \* Operator, Pointer expression: assignment, arithmetic, comparison, Dynamic Memory Allocation.

➤ **Reference Books:**

1. *C Programming, Stephen Kochan*
2. *Programming with C, Schaum's Series*
3. *C Programming , V. Balaguru Swami*

**Group -D: Data Structure**

**25 Marks**

Introduction to algorithm, analysis for time and space requirements. Linear data structures: Array, stack, queue, circular queue, deque and their operations

and applications.Trees: Definition, Binary Trees, Strictly Binary Trees, Complete and Full Binary Trees, Tree Traversing ( Inorder, Preorder and Postorder ).Searching: Linear and Binary search.Sorting: Bubble, Insertion & Selection sort.

➤ **Reference Books:**

1. *Data Structure using C – Rajni Jindal – Umesh Publication*
2. *Data Structure using C – B. Baluja Dhanpatrai Publication*
3. *Classic Data Structures, 2nd ed., Samanta*

|                            |                 |
|----------------------------|-----------------|
| <b>Internal Assessment</b> | <b>10 Marks</b> |
|----------------------------|-----------------|

**PART-II**  
**PAPER -II**

|                    |                |
|--------------------|----------------|
| <b>Theoretical</b> | <b>F.M.-50</b> |
|--------------------|----------------|

(University Examination: 45 & Internal Assessment in College: 05)

**GROUP – A (TH)**

|                                                    |                 |
|----------------------------------------------------|-----------------|
| <b>Unit-I: Basic concepts of Operating Systems</b> | <b>20 Marks</b> |
|----------------------------------------------------|-----------------|

Introduction: What is OS, Operating system functions, Different types of O.S.: single user, multi user, GUI, multi-programmed, multi processing, multi tasking, batch, time-sharing, real-time.

Processes: Concept of processes, process state, PCB.

CPU scheduling: Definition, preemptive & non-preemptive scheduling, scheduling algorithms (FCFS, SJF, & RR), long-term scheduler, short-term scheduler & medium-term scheduler.

Memory Management: Contiguous memory allocation, paging, page replacement algorithms, swapping.

## ➤ References Books:

1. Milenkovic M., “Operating System : Concept & Design”, McGraw Hill.
2. Tanenbaum A.S., “Operating System Design & Implementation”, Practice Hall NJ.
3. Silbersehatz A. and Peterson J. L., “Operating System Concepts”, Wiley.
4. Dhamdhere: Operating System TMH

## **Unit-II: Data Base Management Systems**

**25 Marks**

Basic concepts: Entity, Attributes, Data Base, DBMS, different types of keys.  
Relational Algebra: Union, Intersection, Subtraction, Cartesian Product, Division, Natural Join, Selection and Projection.

Database Design: ANSI/SPARC 3-Level Architecture, Conceptual Model, Logical Model, Physical Model, ER Diagram, Strong and Weak Entities.

## Structured Query Languages: Create Simple Queries Using Single Table.

Functional dependencies: first, second and third normal forms.

## ➤ Reference Books:

1. *The complete reference-By Coach and loney*
2. *A Beginners guide- By Abbey and corney*
3. *Database System-Elmasri and Navathe*

## Internal Assessment

**05 Marks**

**Practical  
F.M.-50  
GROUP – B (PR)**

**Data Base Management Systems** **40 Marks**  
**ORACLE**

1. Creating a Database: Creating a Table, Data Types.
2. Table and Record Handling: INSERT statement, Using SELECT and INSERT together, DELETE, UPDATE, DROP, ALTER statements.
3. Retrieving Data from a Database: The SELECT statement, Using the WHERE clause, Using Logical Operators in the WHERE clause Using IN, LIKE, ORDER BY.
4. SQL.

**Practical Note Book & VIVA** **10 Marks**

**PAPER-III (PR)**

**Practical** **F.M.-100**  
**Group -A: Digital Electronics** **25 Marks**

1. Familiarization with the following digital IC's NAND and NOR gates.
2. Demonstrate the Universal nature of NAND and NOR gates by relating AND, OR and NOT gates using IC.
3. Set up Exclusive -OR function using NAND & NOR gates.
4. Set up combinational circuits to implement some Boolean functions and test them.
5. Demonstrate the use of Half-Adder using five NAND/NOR gates.
6. Demonstrate the working of Full-Adder with NAND/NOR gates.

## **Group -B: Programming in C and Data Structure 35 Marks**

1. Program on control statement (IF, Switch, LOOP), Arrays, Functions.
2. Searching: Linear & Binary.
3. Sorting: Bubble, Insertion.
4. String manipulation: No. of vowel's, Consonants & words; abbreviation, string palindrome.
5. Arrays: Insert Delete, Stack, Queue, Transpose of a matrix, Add two matrixes.
6. Recursion: Factorial, Fibonacci series, GCD.
7. Searching: Linear & Binary Search.
8. Sorting: Bubble, Selection, and Insertion.

## **Group -C: MS Word, EXCEL and Power Point 20 Marks**

Concept of general tools of MS word, Excel and Powerpoint. Document prepare and analysis using Ms-Excel, Presentation slide prepared using animation

**Practical Note Book & VIVA (10+10)=20 Marks**

## **PART-III**

**PAPER-IV** **100 Marks**  
**Theoretical** **F.M.-50**  
(University Examination: 45 & Internal Assessment in College: 05)  
**GROUP –A (TH)**

**Unit – I: Computer Networks** **25 Marks**

Introduction to Data Communication and network, Overview of ISO-OSI model.

Physical layer: Network Topology, types of network, network protocols, Transmission Mode. Multiplexing: FDM, WDM & TDM. Transmission media: Guided media, Unguided media. Circuit & Packet Switching.

Data Link Layer: Error Detection - Type of Error, Detection, Error Correction, framing, Flow and error control, CRC, Hamming Code.

Network Layer: IP Addressing, IPV4, routing, Gateway.

Application Layer: DNS, SMTP, FTP, HTTP, WWW.

➤ **Reference Books:**

1. *Data Communication & Networking – Behrouz A. Forouzan, TMH*
2. *Computer Network – A.S Tanenbaum, Pearson Education*

**Unit – II: OOPS Using C++** **20 Marks**

Principles of Object Oriented Programming (OOP) : Evolution of C++ - Programming Paradigms - Key Concepts of OOP - Advantages of OOP - Usage of OOP and C++ .Input and Output in C++-Streams-Stream classes

Unformatted console I/O operations-Member functions of istream class-manipulators-manipulators with parameters

Introduction to C++: Tokens, Keywords, Identifiers, Variables, Operators, Expressions and Control Structures: If, If..Else, Switch - Repetitive Statements- for, while, do..while, Pointers and arrays

Inline Functions, friend function, function Overloading and Operator Overloading, Classes and Objects, Constructors and Destructors, Type of Constructors

Inheritance: Single Inheritance , Multilevel inheritance , Multiple inheritance, Hierarchical Inheritance , Hybrid Inheritance. Pointers - Virtual Functions and Polymorphism

➤ **Reference Books:**

1. *E. Balaguruswami – Object Oriented programming with C++*
2. *Kris James – Success with C++*
3. *David Parsons – Object Oriented programming with C++*
4. *D. Ravichandran – Programming in C++*
5. *Dewhurst and Stark – Programming in C++*
6. *Venugopal, Ravishankar, Rajkumar – Mastering C++*

**Internal Assessment**

**05 Marks**

**Practical**  
**F.M.-50 Marks**

**GROUP – B (PR):**

|                            |                 |
|----------------------------|-----------------|
| Programming in C++         | <b>15 Marks</b> |
| Practical Note Book & VIVA | 05 Marks        |

**GROUP –C:** Project (Based on VB/PHP/dot NET/Mobile Technology/Web Application etc.)

**Marks Allotment for Project:**

|                              |          |
|------------------------------|----------|
| Project & Thesis:            | 20 Marks |
| Project presentation & VIVA: | 10 Marks |

Project guide will be faculty members of respective colleges. For external project at least one internal guide is required for each project. In case of group project not more than three students participate. Individual project is preferred.